Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jian-Fang Ma,* Jin Yang and Jing-Fu Liu

Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

Correspondence e-mail: jfma@public.cc.jl.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.041$
$w R$ factor $=0.118$
Data-to-parameter ratio $=12.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Hexaaquacobalt(II) 3-carboxy-4-hydroxybenzenesulfonate tetrahydrate

In the title compound, $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] L_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, where $\mathrm{H} L=$ 3-carboxy-4-hydroxybenzenesulfonic acid $\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{~S}\right)$, each $\mathrm{Co}^{\mathrm{II}}$ cation lies on an inversion center and is octahedrally coordinated by six water molecules. The L^{-}anions do not coordinate to cobalt, but act as counter-anions. The crystal structure is composed of alternating layers of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations and sulfonate anions. The $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations, water molecules and L^{-}anions are connected through a complex pattern of hydrogen-bonding interactions.

Comment

The crystal structures of five transition metal (Mn, Co, Ni, Cu and Zn) 3-carboxy-4-hydroxybenzenesulfonates have been determined. The structure of the manganese compound has been reported in the preceding paper (Ma et al., 2003). The crystal structure of the cobalt compound, (I), is presented here. The crystal structures of the other three related compounds are reported in the following papers.

(I)

The $\mathrm{Co}^{\mathrm{II}}$ atom is located on an inversion center, and all other atoms are in general positions. Selected bond lengths and angles are given in Table 1. Fig. 1 shows the asymmetric unit, together with the complete coordination environment of the $\mathrm{Co}^{\mathrm{II}}$ cation. The coordination of $\mathrm{Co}^{\mathrm{II}}$ is similar to that of $\mathrm{Mn}^{\mathrm{II}}$ (Ma et al., 2003). The distances from cobalt to oxygen range from 2.051 (2) to 2.113 (2) \AA. The average $\mathrm{Co}-\mathrm{O}$ distance of $2.083 \AA$ is similar to the values in other cobalt compounds (Kosnic et al., 1992; Shubnell et al., 1994).

The crystal structure of (I) is composed of alternating layers of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations and sulfonate anions, as shown in Fig. 2. Within the sulfonate layer, there are rows of anions with alternating orientations of the organic group. The dihedral angle between the aromatic ring and the layer of cations is $80.4(3)^{\circ}$, similar to the value of the manganese compound, 78.2 (2) ${ }^{\circ}$ (Ma et al., 2003).

There are two additional, uncoordinated water molecules in the asymmetric unit. The $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations, water molecules and L^{-}anions are connected through a complex pattern of hydrogen-bonding interactions. Selected hydrogenbond parameters are listed in Table 2.

Received 28 April 2003
Accepted 11 June 2003
Online 24 June 2003

Figure 1
View of the asymmetric unit, expanded to show the complete coordination of $\mathrm{Co}^{\mathrm{II}}$, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

A mixture of 3-carboxy-4-hydroxybenzenesulfonic acid $(0.44 \mathrm{~g}$, $2 \mathrm{mmol})$ and $\mathrm{CoCO}_{3}(0.12 \mathrm{~g}, 1 \mathrm{mmol})$ in water $(10 \mathrm{ml})$ was stirred at room temperature for 30 min . Pink crystals of compound (I) were obtained after leaving the solution to stand at room temperature for several days. Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{CoO}_{22} \mathrm{~S}_{2}$: C $24.97, \mathrm{H}$ 4.49\%; found: C 24.79 , H 4.43%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{6} \mathrm{~S}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=673.43$
Triclinic, $P \overline{1}$
$a=6.5281$ (11) \AA
$b=7.2358(18) \AA$
$c=14.627$ (4) \AA
$\alpha=92.73$ (2) ${ }^{\circ}$
$\beta=96.274(18)^{\circ}$
$\gamma=102.803(16)^{\circ}$
$V=667.9(3) \AA^{3}$

$Z=1$
 $D_{x}=1.674 \mathrm{Mg} \mathrm{m}^{-3}$
 Mo $K \alpha$ radiation

Cell parameters from 21 reflections
$\theta=4.9-9.8^{\circ}$
$\mu=0.89 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, pink
$0.50 \times 0.42 \times 0.40 \mathrm{~mm}$

Data collection

Siemens $P 4$ diffractometer ω scans
Absorption correction: none
3436 measured reflections 2603 independent reflections 2167 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$

$$
\begin{aligned}
& \theta_{\max }=26.0^{\circ} \\
& h=-1 \rightarrow 8 \\
& k=-8 \rightarrow 8 \\
& l=-18 \rightarrow 18 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.118$
$S=1.10$
2603 reflections
209 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0737 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.63 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.51 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.191 (11)

Table 1
Selected geometric parameters ($\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

C4-O6	$1.349(3)$	O3-S1	$1.439(2)$
C7-O5	$1.226(3)$	OW1-Co1	$2.051(2)$
C7-O4	$1.301(3)$	OW2-Co1	$2.113(2)$
O1-S1	$1.459(2)$	OW3-Co1	$2.085(2)$
O2-S1	$1.459(2)$		
O5-C7-O4	$123.7(3)$	OW1-Co1-OW3	$89.27(10)$
O3-S1-O1	$113.39(15)$	OW1-Co1-OW2	$88.46(9)$
O3-S1-O2	$112.25(13)$	OW3-Co1-OW2	$90.71(9)$
O1-S1-O2	$109.67(14)$		

Figure 2
View of the alternating layers of cations and anions, along the a axis.

Table 2

Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} W 1-\mathrm{H} 1 A \cdots \mathrm{OW} 4^{\mathrm{i}}$	0.898 (18)	2.002 (19)	2.823 (3)	151 (3)
OW1-H1B $\cdots \mathrm{OW} 5^{\text {ii }}$	0.872 (18)	1.917 (19)	2.780 (3)	170 (3)
$\mathrm{OW} 2-\mathrm{H} 2 B \cdots \mathrm{O} 5^{\text {iii }}$	0.885 (18)	2.114 (19)	2.941 (3)	155 (3)
$\mathrm{O} W 2-\mathrm{H} 2 A \cdots \mathrm{O} W 5^{\text {iv }}$	0.892 (18)	1.871 (19)	2.759 (3)	173 (3)
$\mathrm{OW} 3-\mathrm{H} 3 A \cdots \mathrm{OW} 4^{\text {v }}$	0.909 (18)	1.873 (19)	2.776 (3)	172 (3)
$\mathrm{OW} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O}^{\text {ii }}$	0.916 (18)	1.978 (19)	2.886 (3)	171 (3)
$\mathrm{O} W 4-\mathrm{H} 4 A \cdots \mathrm{O} 3$	0.893 (18)	1.992 (19)	2.847 (3)	160 (3)
$\mathrm{OW} 4-\mathrm{H} 4 B \cdots \mathrm{O} 1^{\text {vi }}$	0.903 (18)	1.961 (19)	2.862 (3)	174 (3)
$\mathrm{OW} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\text {vii }}$	0.868 (18)	1.911 (19)	2.735 (3)	158 (3)
OW5-H5B \cdots O1	0.879 (18)	1.961 (19)	2.791 (3)	157 (3)
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 2^{\text {viii }}$	0.82	1.88	2.652 (3)	156
O6-H6A \cdots O5	0.82	1.91	2.633 (3)	146

Symmetry codes: (i) $x, y, 1+z$; (ii) $1-x, 1-y, 1-z$; (iii) $1-x, 1-y, 2-z$; (iv) $1+x, y, 1+z$; (v) $x, 1+y, 1+z$; (vi) $1+x, y, z$; (vii) $x, 1+y, z$; (viii) $-x,-y, 1-z$.

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The H atoms of the carboxyl group and hydroxyl group were also positioned geometrically and refined as riding atoms, with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The water H atoms were located in a difference Fourier map and refined with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: XSCANS (Siemens, 1994); cell refinement: $X S C A N S$; data reduction: $X S C A N S$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

This work was supported by the Fok Ying Tung Education Foundation and the Ministry of Education of China.

References

Kosnic, E. J., McClymont, E. L., Hodder, R. A. \& Squattrito, P. J. (1992). Inorg. Chim. Acta, 201, 143-151.
Ma, J.-F., Yang, J. \& Liu, J. F. (2003). Acta Cryst. E59, m478-m480.
Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shubnell, A. J., Kosnic, E. J. \& Squattrito, P. J. (1994). Inorg. Chim. Acta, 216, 101-112.
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

